Tag Archives: torque tool

Torque Tool Use

09/06/17        Maureen Graves Anderson

Homer Simpson Tool Safety poster for article, orque Tool UseRecently I was asked about safe torque levels when using electrically, pneumatically, or hydraulically powered screwdrivers or wrenches. These tools are often used in assembly jobs in the manufacturing industry.

Basically, torque is a measure of the turning force on an object. A person holds the tool in place while the tool delivers a specified amount of force, measured in English units, inch-pounds (Newton-meters [nM] in the metric world). As the tool delivers the force, the body braces against the force. When the specified force is reached, the machine stops abruptly. It is this jerking reaction force that causes the problem – over time this repeated force can cause musculoskeletal disorders (MSD). How much force, torque in this case, can a person safely handle? The amount of torque force that a person can tolerate over the course of day varies greatly. Overall, strength, age, sex, posture, grip size and type are all factors that determine tolerance to torque forces.

For healthy adults, we know the range of the maximum voluntary contraction (MVC), the measure of strength for this type of force. But that tells us only the maximum a person can generate. This is not a good indicator for someone repeatedly doing this type of work. For that, we need to modify the MVC with a percentage. 14% of MVC is used for intermittent static contractions and 8% for continuous static contractions over the course of day. So doing the math, I calculate that for 95% of women, the range is 6.7 inch-pounds to 14.6 inch-pounds, with 10.66 inch-pounds being the average. For 95% of men, the range is 13.6 inch-pounds to 21.3 inch-pounds, with 17.6 inch-pounds being the average.

What do you do if the torque tool generates more force than a person can comfortably handle over the course of the day? There are two approaches: engineering controls and administrative controls. Engineering controls should be the first line of defense. Here are a few options:

  • Reaction arm for conventional tool: When a torque tool reaches its specified force, it abruptly stops. A reaction arm transmits the force to the frame rather than the human body. It is interesting that the industry recommends torque reaction arms for forces greater than 12 pounds; this is a pretty good estimate for males. For women, I recommend using these torque reaction arms for forces greater than 10 inch-pounds. There are many on the market, click here for an example.
  • Pulse tools: These tools apply the force by pulsing, and are very quiet and do not require a reaction arm. However, they are more expensive upfront and require more maintenance. In the long run, they may be cost-effective depending upon how they are used.